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and allocated them according to these four designs to 
plot yields of a triticale and a maize uniformity trial. The 
designs varied in the number of environments, but have a 
fixed number of entries and total plots. The error model and 
the assumption of fixed or random entry effects were varied 
in simulations. We extended our simulation for the triticale 
data by including correlated entry effects which are com-
mon in genomic selection. Results show an advantage of 
unreplicated and augmented p-rep designs and a preference 
for using random entry effects, especially in case of cor-
related effects reflecting relationships among entries. Spa-
tial error models had minor advantages compared to purely 
randomization-based models.

Introduction

Multi-environmental trials (METs) are often used in plant 
breeding (Smith et al. 2001, 2005; Crossa et al. 2006; Pie-
pho et  al. 2008; Viana et  al. 2010; Burgueno et  al. 2011) 
to evaluate entries under varying environmental conditions 
in a diverse target region. If available land, seed or finan-
cial resources are limited, which is often the case in early 
generations (Besag and Kempton 1986; Smith et al. 2006; 
Federer and Crossa 2012), the number of environments can 
be increased by reducing the number of replicates per envi-
ronment. Federer (1956) suggested an augmented design 
with replicated checks and unreplicated entries within an 
environment. He created a replicated design for checks 
and augmented blocks by adding unreplicated entries. An 
augmented design requires only seeds for one replicate 
per entry and environment (Federer and Crossa 2012) and 
replicated checks are used for local error control (Stringer 
and Cullis 2002). But this design entails the danger of mis-
adjustment, if checks show a different error variance or 
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otherwise perform differently from unreplicated entries 
(Kempton 1984). Additionally, it allocates a high number of 
plots to checks, which are usually well-established varieties 
and which are normally not directly of interest for selec-
tion (Santos et al. 2002). Therefore, Cullis et al. (2006) pro-
posed to replace replicated checks by unreplicated entries 
in a grid-plot design. They denoted this design as partially 
replicated (p-rep) design. Williams et  al. (2011) applied 
this idea to augmented designs, where all entries are rep-
licated in one of the used environments and the replicated 
entries of each environment are randomized according to a 
resolvable incomplete block design. The augmented p-rep 
design can be seen as one possible design lying between 
a replicated design with two replicates and an unreplicated 
design. Therefore, it is reasonable to expect the perfor-
mance of augmented p-rep design to also be intermediate 
between a replicated and an unreplicated design. But it is 
unknown how well it performs, especially in comparison 
to augmented designs. Chandra (1994) pointed out that the 
preference of replicated and unreplicated designs depends 
on the reduction of the plot error variance after adjustment 
based on check plot observations and therefore, e.g., on 
the stage of selection, the crop (Kempton 1984) and on the 
number of available test environments. Cullis et al. (2006) 
showed the superiority of p-rep designs over three ver-
sions of grid-plot designs with replicated checks for single 
trial analysis only. Clarke and Stefanova (2011) evaluated 
single trial performance of augmented designs and grid-
plot designs with varying numbers of checks and plots 
per checks. Additionally they replaced some unreplicated 
entries of an augmented design to replicate other entries. 
They showed that the latter design is preferable under the 
assumption of spatial error models and that there is an opti-
mal number of plots for replicated entries (checks or entries 
of interest) in single trial designs. In contrast to these evalu-
ations in single trial analysis, the idea of p-rep designs is 
most often used in the context of METs (Beeck et al. 2010; 
Hickey et  al. 2011; Crawford et al. 2011) or it is adapted 
to multi-trait MET analysis (Smith et  al. 2011) or multi-
phase MET experiments (Smith et  al. 2006; Butler et  al. 
2009). Up to now, a comparison of the efficiency of p-rep 
and augmented p-rep designs in the range between the rep-
licated and the unreplicated design in the case of MET data 
is lacking.

The present paper assesses the performance of augmented 
p-rep designs in comparison to replicated and unreplicated 
designs for typical MET data in early generation testing of 
triticale and maize. Furthermore, the performance of the 
commonly used augmented design is investigated. This 
should help plant breeders to get a feeling of the relative per-
formance of different designs. We studied a range of differ-
ent scenarios using fixed or independent random entry effects 
and independent or spatially correlated errors. Furthermore, 

we extended the comparison of independent entry effects to 
correlated entry effects. In plant breeding, the use of models 
with correlated entry effects is common in pedigree-based 
best linear unbiased prediction (BLUP) (Piepho et al. 2008) 
or genomic selection (Jannink et  al. 2010). Furthermore, 
these models allow separating error and genetic effects in 
unreplicated designs and, therefore, provide new opportuni-
ties in the analysis of such designs.

Materials and methods

This paper uses simulation to compare four field trial 
designs resulting in varying allocations of entries within 
a MET. Plot errors from a triticale and a maize uniform-
ity trial were added to simulated entry effects according to 
one of four randomized designs. We first describe the uni-
formity trials. Later we describe the simulation of genetic 
effects, the designs and the methods used to analyze the 
data and evaluate the results.

Uniformity trial

We used two uniformity trials, one with triticale (variety: 
SW Talentro) and one with maize (variety: Companero, 
early, forage maize), both with 1,080 plots ordered in 30 
columns and 36 rows. The plot size was 2 × 3.85 m in triti-
cale and 1.5 ×  6  m in maize with the longer side of the 
plots in the direction across columns. The trials were grown 
in 2007 and 2008 (harvest) at the experimental station 
Ihinger Hof of the University of Hohenheim (Germany). 
All plots within a trial were treated identically using best 
experimental practice.

To characterize the spatial distribution of errors for the 
triticale uniformity trial we separated small- and large-scale 
error effects (Zimmerman and Harville 1991; Gilmour 
et al. 1997) by first fitting fixed row and column effects and 
then looking for additional small-scale spatial error struc-
ture. We calculated an empirical semivariogram to describe 
the spatial dependency of plots within columns (Jour-
nel and Huijbregts 1978), again after correcting for fixed 
effects of rows and columns. It should be mentioned here 
that the same semivariogram is produced if only row effects 
are previously subtracted, because column effects are auto-
matically excluded by considering only plots within col-
umns. Additionally, we used residual maximum likelihood 
(REML) (Patterson and Thompson 1971) to directly esti-
mate the semivariance depending on the distance d between 
plots within columns. We used a model including both 
fixed effects for row and a variance–covariance structure 
V to estimate error variances depending on the distance. 
The variance of the column effect is not included because 
it is confounded with V and will have no influence on the 
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final graph. We modeled a joint variance–covariance struc-
ture (V) for all plots within a column. We assumed that this 
matrix is structured as a Toeplitz (diagonal-constant) matrix 
(see Eq. 1). The structure requires n different parameters, 
one for the diagonal of V and n−1 for the off-diagonals, 
where n is the number of rows within a column.

We calculated the semivariance γ(d) for a distance d by 
subtracting the estimated covariance σd+1 from the esti-
mated variance σ 2

1
.

We did an analogous calculation for exploring the vari-
ances within a row by exchanging rows and columns. We 
further analyzed the triticale uniformity trial using inde-
pendent or one- or two-dimensional spatial error models 
and fitting fixed or random effects for column, row, incom-
plete block, row and column or no block effects. Further-
more, we evaluated the optimal block size by comparing 
the AIC for models with fixed row and column effects and 
random effects for incomplete blocks with varying block 
sizes. Incomplete blocks were arranged in either rows or 
columns. For example, for blocks within rows and a block 
size of three each row is divided into 12 blocks.

Simulation of genotypic effects

We simulated two types of genetic effects. First, we drew 
180 independent entry effects from a normal distribu-
tion with constant variance σ 2

g . Additionally, for triticale 
we drew entry effects from a multivariate normal distribu-
tion with a marker-based variance–covariance structure 
ZgZ ′

gσ
2
u , where Zg is the design matrix to match entry effects 

g to marker effects u (g =  Zgu) and σ 2
u  is the variance of 

marker effects u. This variance–covariance structure cor-
responds to the ridge regression BLUP (RR-BLUP) model 
(Piepho 2009). We determined Zg using DArT data from a 
worldwide set of 161 spring- and winter-triticale genotypes 
characterized by the triticale-specific DArT array used in 
Badea et al. (2011) and Alheit et al. (2012). To simulate 180 
genotypes, we added marker data from 19 doubled haploid 
(DH) lines of the population of DH lines used for breed-
ing triticale in Hohenheim (Germany). These lines were 
also characterized by the same DArT array. For entry-by-
environment effects of each environment, we assumed the 
same variance–covariance structure as for the entry main 
effects. Entry-by-environment effects of different environ-
ment were assumed to be independent. We scaled entry and 
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entry-by-environment effects according to long-term vari-
ance components published in Laidig et al. (2008). Because 
breeding trials are often performed within one year, so that 
entry-by-year and entry-by-year-by-environment interaction 
effects cannot be dissected from entry main and entry-by-
environment effects, respectively, we also used the sum of 
both corresponding variance components. Therefore, we 
used two variance component ratios for each crop to simu-
late entry and entry-by-environment effects: for triticale we 
used the ratios 10.9:3.6 and 15.6:15.3, in maize we used the 
variance component ratios 38.7:15.6 and 47.3:33.4. Because 
calculation time is high especially if entry or error effects 
are correlated, we only performed 600 simulations for triti-
cale in Table 3 and 135 simulations for Table 4. Out of the 
600 simulations, in 537 all 24 models converged, therefore 
we limit our presentation of results to these. In maize, we 
used 500 simulations. To demonstrate that the shown results 
are stable, we performed an analysis of variance with the 
simulation-specific evaluation criteria (see “Evaluation cri-
teria”). We used a letter display to show the significances 
of evaluation criteria differences between different designs.

Design

We compared four different designs. They are identi-
cal concerning the total number of plots and the number 
of entries. Therefore, all designs test a fixed set of entries 
using a fixed number of plots. The designs vary in the 
allocation of entries and the subdivision of the uniformity 
trial into environments, and thus the number of plots per 
entry and the size and especially the number of environ-
ments vary. Specifically, we divided the uniformity trial 
into three, five or six environments depending on whether 
an augmented p-rep design (Fig. 1a), an augmented design 
(Fig. 1b) (both with five environments), a fully replicated 
(three environments) or an unreplicated design (six envi-
ronments) was chosen. The environments were further split 
into one or two replicates, depending on the design, and 
several blocks of size 12. Three blocks make up a column, 
and 5–10 columns constitute an environment. To create the 
augmented p-rep design, we used a beta version of a mod-
ule for generating augmented p-rep designs in CycDesigN 
(VSN International; http://www.vsni.co.uk/). The chosen 
design was restricted to replicate each entry twice in one 
of all possible environments. Simulating five environments, 
this procedure entailed testing each entry on six plots. For 
the augmented design, we replaced two of four plots of rep-
licated entries per block by plots of the first entry, which 
was then treated as a check. This resulted generally in two 
check plots per block and a design with 37 check plots and 
plots for 179 unreplicated entries. For the replicated and 
unreplicated designs, we used the same α-design (Patterson 
and Williams 1976) with six replicates. In the unreplicated 

http://www.vsni.co.uk/
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design, we took each replicate of the α-design as a different 
environment, whereas in the replicated design we merged 
two neighboring replicates to form the α-design for an 
environment.

Analysis

We analyzed the data according to the field design and 
the model of simulated entry effects using a mixed model 
approach. For datasets including entry effects with the 
marker-based variance–covariance structure, we also ana-
lyzed the data assuming independent entry effects with 
constant variance. Additionally, for both independent and 
correlated entry effects we performed analysis assuming 
fixed entry effects. Table 1 gives an overview of the mod-
els used for simulating and analyzing entry effects in the 
data. Furthermore, we used models with independent errors 
as well as one-dimensional first-order autoregressive (AR1) 

(Gilmour et  al. 1997) and linear variance (LV) (Williams 
1986) structures with and without nugget for plot errors 
within a block.

The full model accounting for replicate and incomplete 
block effects is given by

where L, R, B, and G denote environment, replicate, incom-
plete block, and entry, respectively. Environment effects 
and replicate effects nested within environment, both rep-
resented by (L·R) are taken as fixed, while the block effect 
nested within replicate and environment and the entry-
by-environment interaction (G·L) are taken as random. 
The entry main effect (G) is taken as fixed or as random. 
Crossing of two factors is denoted by a dot between the 
corresponding two factors. In our models, we took effects 
for environment and replicate as fixed, thus ignoring inter-
environment and inter-replicate information (Piepho and 

(2)L · R + L · R · B + G + G · L,

(a)

(b)

Fig. 1   Allocation of plots to replicated entries (replicate 1 dark gray, 
replicate 2 in light gray) in augmented p-rep designs (a) and allo-
cation of check plots (light gray) in an augmented design (b) to 18 
blocks of size 12 within one environment. In both layouts, the two 
boldfaced vertical lines divide each row of 36 plots into three blocks 

of 12 plots each, referred to in this legend as field block for clarity. 
The 36 replicated entries of the augmented p-rep design are allocated 
to the 72 gray plots (four gray plots per field block) using an α-design 
with two replicates and nine blocks of size four per replicate. In both 
designs, plots for unreplicated entries are shown in white

Table 1   Overview of six 
models used to generate genetic 
effects and to analyze the 
simulated data. Each row in 
the table below the header line 
corresponds to one model

All analysis models were 
combined with several spatial 
models

Simulated entry and entry-
environmental effects are

Entry effects analyzed as Entry-by-environment effects 
analyzed as

Fixed Random

Independent Correlated,  
using markers

Independent Correlated, 
using markers

Independent ✓ ✓
Independent ✓ ✓
Correlated, using markers ✓ ✓
Correlated, using markers ✓ ✓
Correlated, using markers ✓ ✓
Correlated, using markers ✓ ✓
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Möhring 2006). Additionally, we assumed homogeneous 
variances for blocks and errors across environments. This is 
in contrast to the common procedure in analysis of METs, 
where heterogeneous variances are assumed (Smith et  al. 
2001; Möhring and Piepho 2009). But in our case, different 
simulated environments were based on plot errors of the 
same uniformity trial. Therefore, we assumed homogene-
ous variances for both block and error variances. For ran-
dom entry main effects it was assumed that effects follow 
a normal distribution with variance–covariance matrix Igσ

2
g  

or ZgZ′gσ
2
u , where Ig is an identity matrix of size g and Zg 

is the design matrix to match entry g to marker effects u 
(g = Zgu). The latter assumption corresponds to the ridge 
regression BLUP (RR-BLUP) model (Piepho 2009), in 
which ZgZ′g is proportional to the assumed marker-based 
variances–covariances matrix between genotypes. This 
model is easy to implement and usually performs equally 
well as other models assuming other distributions for 
marker effects [e.g., a t-distribution (BayesA), or a mixture 
of normal distributions (BayesB); (Guo et  al. 2012)]. For 
random entry-by-environment interaction effects, the Kro-
necker product of Il and Igσ

2
g  or ZgZ′gσ

2
u  is assumed, where 

Il is an identity matrix of size l corresponding to the num-
ber of environments. For the unreplicated design, there is a 
single replicate per environment, so R is dropped from Eq. 
(2). Additionally, for the unreplicated design and assum-
ing either fixed entry effects or independent random entry 
effects, the entry-by-environment interaction and an inde-
pendent error are totally confounded; therefore the interac-
tion is dropped from the model. All analyses are performed 
using SAS version 9.3 (SAS Institute 2011).

Evaluation criteria

For all models, we calculated the mean square error of a 
difference (MSED) between estimated and true simulated 
effect. Additionally, for fixed entry effects, we calculated the 
mean standard error of differences (s.e.d.), where the s.e.d. 
were estimated based on the fitted model. These values 
are denoted as pre and emp, respectively, in several papers 
(Besag and Kempton 1986; Zimmerman and Harville 1991; 
Wu et al. 1998; Wu and Dutilleul 1999). If the fitted model 
is valid, the square of the s.e.d. had the same expectation as 
the MSED. We further calculated the mean of the true simu-
lated effects for the estimated best 18 entries as a measure 
of the realized selection gain. Taking the best 18 entries cor-
responds to a selection fraction of 10 %.

Results

We first report the main results for the analysis of the plot 
data of the triticale uniformity trial. This shows which error 

structure can be expected to fit well in our simulations. A 
more detailed report is found in the Online resource. Later, 
we show results from our simulations.

Uniformity trial

The triticale uniformity trial can be characterized by 
an average yield level of 53.8  dt  ha−1 (standard error 
5.3  dt  ha−1). As our aim is to compare field designs 
requiring some blocking structure, we first searched 
for an adequate block size. We fitted models including 
fixed effects for row and column and random effects 
for incomplete blocks with varying block size. Figure 2 
shows that the minimal AIC and, therefore, optimal 
block size within columns is 10. Presumably, the spiky 
plot just represents sampling variation. With 36 plots 
per column, a block size of 10 results in blocks includ-
ing plots of different columns. We therefore choose 
a block size of 12, which divides a column into three 
blocks. Additionally, in models without blocks, fitting 
row effects are less important (see results in Table S1 
in Online resource). This indicates that blocking in the 
direction of plots with common long sides is preferable, 
which is in accordance with the way cereal breeders nor-
mally choose blocks.

Figure  3 shows the empirical and model-based semi-
variance as related to the distance between plots within a 
column. In computing the empirical semivariance, row 
and column effects are first estimated and eliminated. 
The model-based approach fits both the semivariance and 
fixed row effects in one model using the Toeplitz structure 
described in (1). Both approaches describe the variability 
within the field and result in nearly identical curves. Both 
curves show an increasing semivariance with increasing 
distance and a clear non-zero semivariance for small dis-
tances. This indicates some spatial variability and the need 
for a nugget effect. The lower slope of the semivariance 

Fig. 2   AIC depending on block size using models with fixed column 
and row effects and a random effect for blocks. Blocks are arranged 
in direction of columns with a maximum block size equal to the num-
ber of plots per column (36)
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within columns compared to the variance within rows 
(data not shown) shows that incomplete blocks should be 
arranged in direction of columns.

In Table 2, AIC (Akaike 1974) values are given for some 
models used for analyzing the uniformity trial. Again, 
further models were used and their AIC values are given 
in Table S1 in the Online resource. While both the use of 
blocks and the use of spatial error models within blocks 
decreased the AIC, the best model fit is obtained using a 
row–column model and a two-dimensional spatial linear 
variance error model for the complete trial (Williams et al. 
2006).

Our results suggest the following:

1.	 If some kind of incomplete blocking is required, e.g., 
if augmented or augmented p-rep designs are of inter-
est, then relatively large blocks within columns are pre-
ferred. For practical reasons, we chose a block size of 
12 plots.

2.	 Two-dimensional spatial error models outperform one-
dimensional spatial error models.

3.	 A nugget effect most often improved model fit.
4.	 There is a slight preference for using a linear variance 

or a one-dimensional autoregressive error structure, 
both with nugget, compared to other possible error 
structures.

As our interest is in comparing block designs (aug-
mented design, augmented p-rep design), we analyzed our 
simulated data using models for designs with incomplete 
blocks and a block size of 12 and, thus, with either inde-
pendent or one-dimensional spatial error models within a 
block. We concentrated on linear variance and the often-
used first-order autoregressive model.

Results from simulation

We will discuss the results of our simulation in four parts: 
(1) the influence of assuming random or fixed entry effects 
in the analysis, (2) the influence of correlated entry effects 
as compared to independent entry effects in simulating and 
analyzing data, (3) the influence of spatial error models, and 
finally, (4) the influence of the four field designs. Because of 
most often comparable results for both crops and all variance 
component ratios, we only report results from one crop and 
one variance component ratio. The used crop and variance 
component ratio in question is given in the table or figure.

1.	 When entry effects simulated as independent were ana-
lyzed, no clear preference of assuming fixed or random 
entry effects was found for correlation between true 
and estimated entry effects and the realized selection 
gain (Tables  3, 5). In case of simulating and analyz-
ing correlated entry effects, there was an advantage 
for BLUP compared to best linear unbiased estima-
tion (BLUE). This is expected, as in this case entries 
are correlated and, therefore, the value of any one entry 
depends partly on the value of every other correlated 
entry. Additionally, and not unexpectedly, because 
BLUP maximizes the probability of correct ranking of 
entries for known variance components (Searle et  al. 
1992), BLUP outperformed BLUE for the evaluation 
criteria MSED, although in the simulations variance 
components were estimated from the data.

2.	 A comparison of correlations between different 
approaches for simulating entry effects is not directly 
possible, because they are based on differently simu-
lated true effects. Nevertheless, the correlation between 
true and estimated entry effects using either inde-

Fig. 3   Empirical and model-based semivariance in dependence of 
the distance between plots within a column. For the empirical semi-
variogram fixed row effects are previously removed. For the model-
based semivariogram fixed row effects are included in the model

Table 2   AIC values for models with varying block structure and error model; for two-dimensional spatial error structures all observations are 
correlated, for one-dimensional error structure the correlation was limited to observations within a block

AR1 first-order autoregressive, LV linear variance Williams 1986)

Number of dimensions  
of spatial error model

Random design effects  
in the baseline model

Added spatial error model

None AR1 AR1 + nugget LV + nugget

2 None 6,642.69 6,305.33 6,056.85 6,057.15

1 Blocks within column 6,312.46 6,314.16 6,316.15 6,305.36

2 Column + row 6,120.83 6,102.05 6,054.85 6,051.14
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pendent or correlated entry effects in simulation and 
analysis was quite similar, because we scaled them 
using long-term variance components. The correlation 
decreased if correlated entry effects were simulated but 
fixed or independent entry main effects were used in 
analysis.

3.	 In contrast to the clear advantage of BLUP with cor-
related entry effects, the advantage of spatial error 
models for estimating entry main effects was limited 
(Table  3). Additionally, the computing time increased 
and the probability of convergence was reduced, espe-
cially for models assuming fixed entry main effects and 
an autoregressive error structure.

4.	 In Tables 3, 4 and 5, a clear ranking of the four designs 
for both crops with both variance component ratios 
is observed. For the highest ratio of entry and entry-
by-environment variance (triticale with a ratio of 
10.9:3.6), the replicated design and the augmented 

design showed a similar performance. Therefore, see-
ing the entries twice in each of three locations (in total 
six observations) in the replicated design approxi-
mately compensated the advantage of seeing entries 
once in each of five locations in the augmented design. 
For the other ratios, the relative performance of the 
augmented design increased with decreasing ratio. For 
all ratios, both designs were worse than the augmented 
p-rep design and the unreplicated design. The unrepli-
cated design showed the best performance according to 
all evaluation criteria and for all simulated crops and 
all variance component ratios. The augmented p-rep 
design showed a clearly better performance than the 
augmented design. While the evaluation criteria of 
the augmented p-rep design were slightly better than 
expected from the linear interpolation between repli-
cated and unreplicated design, the augmented design 
was always worse (results not shown).

Table 3   Four evaluation criteria for using different models for simulating and analyzing data

The evaluation criteria are the correlation of simulated and estimated entry effects, the mean square error of a difference between simulated and 
estimated entry effects (MSED), model-based estimated standard error of a difference between simulated and estimated entry effects (s.e.d.) and 
selection gain measured as average true value of the 18 best-estimated entries

Variance component ratio entry to entry-by-environment: 10.9:3.6, n = 537

Values in a row followed by a common letter are not significantly different by a t test (α = 0.05)

Evaluation 
criterion

Model assumed for Design

Simulation of entry and  
entry-by-environment  
effects

Analysis of Replicated Augmented Augmented 
p-rep

Unreplicated

Entry effects Entry-by- 
environment effects

Correlation Independent Fixed Independent 0.8481b 0.8434a 0.8588c 0.8651d

Correlation Independent Independent Independent 0.8482b 0.8438a 0.8590c 0.8652d

Correlation Correlated Fixed Independent 0.7955b 0.7830a 0.8038c 0.8103d

Correlation Correlated Independent Independent 0.7957b 0.7846a 0.8047c 0.8105d

Correlation Correlated Fixed Correlated 0.7956b 0.7831a 0.8045c 0.8104d

Correlation Correlated Correlated Correlated 0.8373a 0.8377a 0.8500b 0.8556c

Selection gain Independent Fixed Independent 4.739a 4.750a 4.817a 4.826a

Selection gain Independent Independent Independent 4.734a 4.752a 4.821a 4.827a

Selection gain Correlated Fixed Independent 3.504a 3.472a 3.542a 3.566a

Selection gain Correlated Independent Independent 3.505a 3.480a 3.553a 3.567a

Selection gain Correlated Fixed Correlated 3.505ab 3.470a 3.540bc 3.568cd

Selection gain Correlated Correlated Correlated 3.662ab 3.660a 3.710bc 3.733cd

MSED Independent Fixed Independent 4.279b 4.433a 3.897c 3.694d

MSED Independent Independent Independent 3.115b 3.192a 2.908c 2.792d

MSED Correlated Fixed Independent 5.473b 5.805a 5.253bc 5.113c

MSED Correlated Independent Independent 4.133b 4.232a 4.017bc 3.967c

MSED Correlated Fixed Correlated 5.469b 5.914a 5.234bc 5.109c

MSED Correlated Correlated Correlated 2.334a 2.314a 2.173a 2.063a

S.e.d. Independent Fixed Independent 2.923b 2.954a 2.763c 2.713d

S.e.d. Correlated Fixed Independent 2.766b 2.875a 2.665c 2.629d

S.e.d. Correlated Fixed Independent 2.762b 2.859a 2.658c 2.627d
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Discussion

This paper studies the efficiency of augmented p-rep 
designs in the range between replicated and unreplicated 
designs, especially compared to an augmented design. 
While unreplicated designs fit best for both crops and all 
simulated variance component ratios, the augmented p-rep 
design is just slightly inferior. The augmented design and 
the replicated design have a lower efficiency. We chose 
simulations to study the efficiency of these four designs for 
a range of different conditions. The disadvantage of simu-
lation is that its results depend on the validity and useful-
ness of the underlying assumption for performing the sim-
ulation. As described, our simulations were mainly based 
on five inputs: a fixed total number of plots and entries, 
long-term variance components, marker data from a broad 
breeding population, plot errors of a uniformity trial and 
finally the chosen models for simulating and analyzing 
the data. If variance components or the amount of marker-
based correlation between entries change, e.g., if a closer or 

more homogeneous or diverse breeding population is used, 
this will affect the results of our simulations. To account 
for this uncertainty, we varied our variance components 
ratio from about 3:1 (10.9:3.6) to 1:1 (15.6:15.3; entry to 
entry-by-environment).

Taking plot errors of uniformity trials allow conclusions 
about the performance of different spatial models without 
directly assuming a special model for simulation. Uniform-
ity trials are mentioned in Fisher (1926) for proving the 
validity of estimation in field experiments. They are fre-
quently used to study the variation within a field (Wiebke 
1935), and to find the optimal plot size, the optimal plot 
arrangements or the best spatial model (Williams 1986; 
Richter and Kroschewski 2012). A more critical point is the 
assumed model for both simulating and analyzing data. We 
chose an additive model, thus we assumed that the perfor-
mance of an entry in a special environment is the sum of 
the genetic effect, the environmental effect and the entry-
by-environment effect. This can easily be implemented in 
standard statistical software. But there exist other models 

Table 4   Correlation between simulated and estimated entry effects for different spatial error models and different designs

Additionally, the number of converging simulation runs is given in parentheses

Data are simulated with independent entry and entry-by-environment effects, entry-by-environment effects in the analysis are taken as independent

Variance component ratio entry to entry-by-environment: 15.6:15.3; n = 135

Values in a row followed by a common letter are not significantly different by a t test (α = 0.05)

Spatial error model Entry main effect  
in the analysis

Design

Replicated Augmented Augmented p-rep Unreplicated

Independent Fixed 0.7895a (135) 0.8189b (135) 0.8284c (135) 0.8424d (135)

First-order autoregressive plus nugget Fixed 0.7924a (67) 0.8185b (67) 0.8284c (75) 0.8405d (77)

Linear variance plus nugget Fixed 0.7883a (105) 0.8192b (110) 0.8276c (108) 0.8430d (130)

Independent Independent 0.8046a (135) 0.8311b (135) 0.8398c (135) 0.8524d (135)

First-order autoregressive plus nugget Independent 0.8044a (135) 0.8318b (135) 0.8396c (132) 0.8520d (135)

Linear variance plus nugget Independent 0.8050a (128) 0.8313b (127) 0.8397c (127) 0.8525d (134)

Table 5   Estimated correlation for using different models for analyzing triticale and maize data with varying variance component ratios, n = 537 
for ratio 10.9:3.6, n = 135 for ratio 15.6:15.3, and n = 500 for maize

Values in a row followed by a common letter are not significantly different by a t test (α = 0.05)

Crop Analysis of entry 
effects

Variance component ratio Design

Replicated Augmented Augmented p-rep Unreplicated

Triticale Fixed 10.9:3.6 0.8481b 0.8434a 0.8588c 0.8651d

Triticale Independent 10.9:3.6 0.8482b 0.8438a 0.8590c 0.8652d

Maize Fixed 38.7:15.6 0.8440a 0.8437a 0.8588b 0.8651c

Maize Independent 38.7:15.6 0.8440a 0.8441a 0.8588b 0.8652c

Maize Fixed 42.3:33.4 0.8282a 0.8414b 0.8526c 0.8645d

Maize Independent 42.3:33.4 0.8282a 0.8419b 0.8526c 0.8646d

Triticale Fixed 15.6:15.3 0.7895a 0.8189b 0.8284c 0.8424d

Triticale Independent 15.6:15.3 0.8046a 0.8311b 0.8398c 0.8524d
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for describing the effect of entry and entry-environmental 
effects, e.g., multiplicative models (Gollob 1968; Gabriel 
1978). Additionally, we simulated normally distributed 
entry effects, thus assuming random entry effects. There-
fore, a slight preference for BLUP in our simulations can 
be expected. Our results, showing an advantage of BLUP, 
are comparable to empirical results found, e.g., in Hill and 
Rosenberger (1985), Stroup and Mulitze (1991), Stanek 
et al. (1999) and Kleinknecht et al. (2013).

Fixing the total number of plots and entries

Our designs used a fixed number of plots and entries, but 
varied in the number of environments. As testing entries 
normally result in costs for managing plots and fixed costs 
per environment, the costs for our four designs are not 
exactly identical, though according to collaborating breed-
ers the variable cost per plot by far dominates the fixed 
cost per environment. An alternative is to fix the costs. This 
requires an unequal number of plots assigning more plots 
to designs with a smaller number of environments. There-
fore, fixing the cost will indirectly improve our evalua-
tion criteria for the replicated design and deteriorate them 
for the unreplicated design compared to the augmented 
or augmented p-rep design. We ignored varying costs in 
our simulation. For the case of fixed number of the total 
number of plots and entries, Talbot et  al. (1984) showed 
a preference for maximizing the number of environments 
while decreasing number of replicates per environment, 
which is in accordance with our findings. But the unrepli-
cated design also has some disadvantages. Because entries 
are unreplicated per environment, a single-environment 
analysis is not possible. However, many breeders require a 
speedy analysis even of single environments for quick and 
early selection decisions, therefore it is often crucial that 
individual trials can be analyzed separately without having 
to wait for data from all environments to come in. Further-
more, no two-stage analysis is possible if entry effects are 
assumed as fixed or if both a random and uncorrelated error 
and entry effect are assumed. Additionally, in these cases 
a separation of entry-by-environment and error effects is 
impossible, which has two main consequences. On the one 
hand, no test for entry-by-environment interaction is pos-
sible, but in plant breeding this can usually be accepted 
as the existence of entry-by-environment interaction is 
expected a priori. On the other hand, if error variances 
are heterogeneous, this confounding inflates all error vari-
ance estimates by adding the entry-by-environment inter-
action variance and finally results in a different weighting 
of entry-by-environment means. A different weighting of 
entry-by-environment means probably decreases the cor-
relation between true and estimated entry effects, although 

in analyses of plant breeding METs, Möhring and Piepho 
(2009) demonstrated that ignoring weights often lead to 
acceptable results. Using models with spatially correlated 
errors without nugget or using random and correlated entry 
effects allows an analysis of single environments. While the 
assumption of no nugget is often problematic, correlated 
entry effects are common in genomic selection. Therefore, 
the use of genomic selection offsets some of the disadvan-
tages of unreplicated designs.

Fixed or random environmental effects

There is an ongoing discussion whether the factor ‘envi-
ronment’ in the analysis of plant breeding METs should be 
assumed as random or fixed (Smith et al. 2001). Field trials 
are normally conducted at fields of experimental stations, 
and therefore are not drawn at random from the popula-
tion of all fields within a region, where the crop can poten-
tially be grown. Nevertheless, it is often assumed that fields 
at experimental stations are representative for a region. 
Clearly, random sampling of environments from a target 
region is desirable for an unbiased estimate of entry means 
in the target.

Assuming that environments are a random sample, 
taking environmental main effects as fixed but entry-by-
environmental effects as random in the analysis ignores 
inter-environment information, but the loss of informa-
tion is normally small (Piepho and Möhring 2006) because 
environment main effects are often large compared to entry 
effects. Taking them as random requires the estimation of 
a variance component, and therefore about 10 degrees  of 
freedom for an adequate precision of this variance compo-
nent (Mead et  al. 2012). In our case there are only three 
to six environments, therefore we took environment main 
effects as fixed in our analyses.

Reasons for using an incomplete block design

Williams and Luckett (1988) concluded that their uniform-
ity trials in barley and cotton support a two-dimensional 
blocking structure with row and column effects or a two-
dimensional spatial error model (Cullis and Gleeson 1991). 
This is in accordance with our findings where a model 
including row and column effects and two-dimensional 
spatial errors fits best for the uniformity trial data. Never-
theless, using a block effect and one-dimensional spatial 
error models also improved the model fit compared to a 
model with just an independent error term. Furthermore, 
using incomplete blocks with long thin plots within a block 
is common in cereal breeding (Patterson and Hunter 1983). 
Therefore, we decided to use an incomplete block design in 
our simulations.
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Stage‑wise analysis

Especially in routine analysis of large series of METs, it 
is common to use a stage-wise approach, where adjusted 
means are estimated for each trial or environment (Möhring 
and Piepho 2009; Welham et al. 2010; Piepho et al. 2012). 
These means are then summarized in the second stage to 
estimate means across trials or environments. In genomic 
selection, a further stage for estimating genetic breed-
ing values can be added (Schulz-Streeck et al. 2013). The 
advantage of stage-wise analysis is the option to easily 
account for specifics of the design and error structure for 
each environment in the first stage (Mathews et al. 2008). 
Additionally, it normally speeds up calculation. Unfortu-
nately, a stage-wise approach for the unreplicated design is 
impossible if error effects are assumed as independent or as 
correlated including a nugget and entry effects are assumed 
as fixed or as random independent effects. We therefore 
used single-stage analysis assuming homogeneous block 
and error variances for our simulations.

For correlated entry effects, which are common in 
pedigree-based analysis or genomic selection, we tried 
out a two-stage analysis for all designs. Such an analysis 
assumes environmental-specific block and error variances 
and, therefore, allows a weighting of environments by their 
precision. As in the case of spatial statistics, the probabil-
ity of convergence decreases, but results from two-stage 
analysis vary only slightly from our results using a one-
stage approach (data not shown). Larger differences can be 
expected, if there is a real heterogeneity of variances in the 
data. In our case we used a single uniformity trial; there-
fore, no heterogeneity of variances was expected.

Number of replicated plots

As discussed above, the augmented p-rep design can be 
seen as a design intermediate between a replicated and an 
unreplicated design. If the percentage of replicated entries 
is reduced, the design becomes similar to the unreplicated 
design, whereas if the number is increased, the design 
becomes more similar to the replicated design. In our case, 
we replicated 20 % of the entries in each environment. For 
the settings studied in this paper, this corresponds to using 
17 % of the plots for checks in augmented designs. Fisher 
(1926) proposed to use the square root of the number of 
entries as the number of check plots in augmented designs. 
Thus, about 14 plots or 8 % of the plots should be assigned 
to checks. For p-rep designs the number of additional plots 
is often higher: Beeck et al. (2010) replicated 20–60 % of 
the entries, Payne (2006) 19  % and Hickey et  al. (2011) 
70–90 %. 20 % plots for checks are also common in aug-
mented designs (Mathews et al. 2008; Kehel et al. 2010).

Number of check varieties

In our experience from Germany, plant breeders most often 
conduct early generation trials with two to four check vari-
eties, which are replicated with equal or varying frequen-
cies. We simulated the most extreme case of using just one 
check variety for all replicated plots. The other extreme 
is to replicate each check twice, which maximizes the 
number of check varieties. The latter allocation is identi-
cal with a p-rep design. Therefore it can be expected, that 
the efficiency of augmented designs increases as the num-
ber of checks increases and the number of plots per check 
decreases. Additionally, breeders usually do not consider 
checks for selection. Because we fixed the number of 
entries and the number of plots used in our simulations, 
we used all entries for calculation of evaluation criteria. 
Therefore, the first entry is always included, irrespectively 
of whether it was used as check (augmented design) or nor-
mal entry (otherwise). Excluding the check variety from 
calculation of evaluation criteria would further decrease the 
relative efficiency of the augmented design, because this 
design has the highest number of plots of the check variety. 
Additionally, excluding this entry leads to an unequal num-
ber of data points used in different designs.

Probability of convergence

We observed convergence problems in analysis, especially 
when we fitted fixed entry effects and assumed an autore-
gressive error structure. This is in accordance to Robbins 
et al. (2012), Clarke and Stefanova (2011) and Piepho et al. 
(2013). They mentioned convergence problems when using 
autoregressive variance models with several fixed and ran-
dom effects or if the autocorrelation parameter was near 
unity. In our case of fitting spatial error structures within 
blocks, an autocorrelation near unity implies fit of identical 
spatial effects for all plots within a block. This is identical 
to fitting a block effect across the range of plots assumed to 
be spatially correlated (Piepho et al. 2008). Therefore, the 
autocorrelation parameter can be confounded with other 
effects in the model.

Spatial error models

We detected minor effects of the chosen spatial model 
on the estimated main entry effects. All simulations were 
based on just two uniformity trials. Using other uni-
formity trials may show an advantage of spatial models, 
which is reported, e.g., in Wu et al. (1998) or Müller et al. 
(2012). But our result shows that using a randomization-
based approach for modeling MET as baseline model and 
using spatial error structures as add-on option (Williams 
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1986; Stefanova et  al. 2009; Beeck et  al. 2010) can be 
advantageous.

Conclusion

Unreplicated designs showed the best values of all evalua-
tion criteria in all simulated scenarios. Nevertheless, aug-
mented p-rep designs can be advantageous, e.g., if there is 
(1) interest in results of single trial analysis or (2) a stage-
wise analysis with weighting of individual environments 
according to their precision is preferred. Both designs 
clearly outperform replicated and classical augmented 
designs.
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